Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Magnus G. Johnston and
 William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Co}-\mathrm{O})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.115$
Data-to-parameter ratio $=23.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Barium cobalt chloride selenite, $\mathrm{Ba}_{2} \mathrm{CoCl}_{2}\left(\mathrm{SeO}_{3}\right)_{2}$

Hydrothermally synthesized $\mathrm{Ba}_{2} \mathrm{CoCl}_{2}\left(\mathrm{SeO}_{3}\right)_{2}$ contains [001] chains of corner-linked $\mathrm{CoO}_{4} \mathrm{Cl}_{2}\left[d_{\mathrm{av}}(\mathrm{Co}-\mathrm{O})=2.073(3) \AA\right.$ and $d(\mathrm{Co}-\mathrm{Cl})=2.544(2) \AA$] octahedra and SeO_{3} groups $\left[d_{\mathrm{av}}(\mathrm{Se}-\mathrm{O})=1.702(3) \AA\right]$. These chains stack in the [100] direction, with 10 -coordinate Ba^{2+} cations (to seven O and three Cl) binding the chains in the [010] direction. Most of the atoms occupy special positions: Co has site symmetry $2 / m$ and $\mathrm{Ba}, \mathrm{Se}, \mathrm{Cl}$ and one O atom have site symmetry m.

Comment

$\mathrm{Ba}_{2} \mathrm{CoCl}_{2}\left(\mathrm{SeO}_{3}\right)_{2}$ is one of the few well characterized synthetic selenite chlorides. Others include $\mathrm{Co}\left(\mathrm{HSeO}_{3}\right)$ $\mathrm{Cl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Johnston \& Harrison, 2000), built up from onedimensional chains of vertex-linked $\left[\mathrm{HSeO}_{3}\right]^{-}$pyramids and $\mathrm{Co}\left(\mathrm{OH}_{2}\right)_{4} \mathrm{Cl}_{2}$ octahedra, and $\mathrm{Cu}_{3} \mathrm{Er}\left(\mathrm{SeO}_{3}\right)_{2} \mathrm{O}_{2} \mathrm{Cl}($ Berrigan \& Gatehouse, 1996), which consists of a three-dimensional network of SeO_{3} pyramids, $\mathrm{CuO}_{4} \mathrm{Cl}_{2}$ octahedra and ErO_{8} polyhedra.

In the title compound (Fig. 1), the octahedral cobalt cation (site symmetry $2 / m$) is coordinated by four O 1 atoms $\left[d_{\mathrm{av}}(\mathrm{Co}-\mathrm{O})=2.073(3) \AA\right]$ and two chloride ions. The bondvalence sum (BVS; Brown, 1996) for Co of 1.93 is close to the expected value of 2.00 . The $\left[\mathrm{SeO}_{3}\right]^{2-}$ group (Se site symmetry m) adopts its usual pyramidal coordination (Wildner, 1991; Harrison, 1999), with $d_{\mathrm{av}}(\mathrm{Se} 1-\mathrm{O})=1.702(3) \AA$ and $\operatorname{BVS}(\mathrm{Se} 1)=4.03($ expected BVS $=4.00)$. The Ba cation (site symmetry m) is irregularly coordinated by seven O atoms and three chloride ions with $\mathrm{BVS}(\mathrm{Ba})=2.11$ (expected value 2.00). The next nearest O atom is some $4.21 \AA$ distant.

Figure 1
Fragment of $\mathrm{Ba}_{2} \mathrm{CoCl}_{2}\left(\mathrm{SeO}_{3}\right)_{2}$ (50\% probability displacement ellipsoids; the symmetry codes are as in Table 1).

Received 10 May 2002
Accepted 20 May 2002
Online 24 May 2002

(a)

(b)

Figure 2
Polyhedral diagrams of $\mathrm{Ba}_{2} \mathrm{CoCl}_{2}\left(\mathrm{SeO}_{3}\right)_{2}$ viewed down (a) [001] and (b) [100]. The SeO_{3} pyramids (gold) are represented by $\mathrm{SeO}_{3} \mathrm{E}$ tetrahedra, where the dummy atom E , geometrically placed $1.0 \AA$ from Se and indicated by a small blue sphere, represents the $\mathrm{Se}^{\mathrm{IV}}$ lone pair. $\mathrm{CoO}_{4} \mathrm{Cl}_{2}$ octahedra are purple and Ba^{2+} cations are represented by red spheres of arbitrary radii.

The geometry of both O atoms is roughly tetrahedral: O 1 bonds to one Co , one Se , and two Ba , and O 2 (site symmetry m) bonds to one Se and three Ba . Cl 1 (site symmetry m) is surrounded by one Co and three Ba atoms in a 'see-saw' geometry, akin to the S -atom coordination in molecular SF_{4}. This geometry can be visualized as trigonal bipyramidal with one of the equatorial vertices missing. Here, the Co atom occupies one of the nominal axial positions.

The overall structure (Fig. 2) consists of infinite [001] chains of isolated $\mathrm{CoO}_{4} \mathrm{Cl}_{2}$ octahedra fused together by pairs of selenite groups. Thus, each Co octahedron corner shares with four SeO_{3} groups via O 1 , and each SeO_{3} group bridges two Co groups. The $\mathrm{Co} / \mathrm{Se}$ chains stack on top of each other in the a
direction, with each chain separated by small channels which are probably associated with the $\mathrm{Se}^{\mathrm{IV}}$ lone pairs. The chargebalancing Ba^{2+} cations bind the chains in the [010] direction, through a variety of corner- and edge-sharing links. Each $\mathrm{BaO}_{7} \mathrm{Cl}_{3}$ polyhedron is surrounded by six others.

Experimental

The crystals were prepared by hydrothermal reaction of BaCO_{3} $(0.592 \mathrm{~g}, 3 \mathrm{mmol}), \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.427 \mathrm{~g}, 6 \mathrm{mmol}), \mathrm{SeO}_{2}(0.334 \mathrm{~g}$, 3 mmol) and $15 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. Reactants were placed in a 23-ml capacity, teflon-lined steel bomb and $1 M \mathrm{HNO}_{3}$ was added until the pH of the solution was about 1 . The bomb was heated for 3 d at 453 K . Upon cooling the bomb to room temperature over 3 h , the resulting solids were recovered by vacuum filtration and washing with water. A few very pale purple needles of $\mathrm{Ba}_{2} \mathrm{CoCl}_{2}\left(\mathrm{SeO}_{3}\right)_{2}$ were isolated from a mixture of unidentified pink and white powders.

Crystal data

$\mathrm{Ba}_{2} \mathrm{Co}\left(\mathrm{SeO}_{3}\right)_{2} \mathrm{Cl}_{2}$
$M_{r}=658.44$
Orthorhombic, Pnnm
$a=6.7635$ (4) \AA 。
$b=12.6454$ (7) \AA
$c=5.3866$ (3) A
$V=460.70(5) \AA^{3}$
$Z=2$
$D_{x}=4.746 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2656 reflections
$\theta=3.2-32.5^{\circ}$
$\mu=18.70 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, pale purple
$0.48 \times 0.02 \times 0.02 \mathrm{~mm}$

Data collection

Bruker SMART1000 CCD diffractometer

ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\min }=0.030, T_{\max }=0.602$
3658 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.115$
$S=1.13$
902 reflections
39 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0817 P)^{2}\right.$
$+0.2871 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {i }}$	2.700 (6)	$\mathrm{Co} 1-\mathrm{O} 1^{\text {ii }}$	2.075 (3)
Ba1-O1	2.813 (3)	$\mathrm{Co} 1-\mathrm{O} 1^{\text {ix }}$	2.075 (3)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	2.813 (3)	Co1-O1	2.075 (3)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	2.875 (4)	$\mathrm{Co} 1-\mathrm{O} 1^{\text {x }}$	2.075 (3)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {iv }}$	2.875 (4)	$\mathrm{Co} 1-\mathrm{Cl}^{\text {x }}$	2.5465 (19)
$\mathrm{Ba} 1-\mathrm{O} 2$	3.043 (3)	Co1-Cl1	2.5465 (19)
$\mathrm{Ba} 1-\mathrm{O} 2^{\text {v }}$	3.043 (3)	$\mathrm{Se} 1-\mathrm{O} 2$	1.685 (6)
$\mathrm{Ba} 1-\mathrm{Cl} 1^{\text {vi }}$	3.2480 (12)	$\mathrm{Se} 1-\mathrm{O} 1^{\text {xi }}$	1.713 (3)
$\mathrm{Ba} 1-\mathrm{Cl} 1^{\text {vii }}$	3.2480 (12)	Se1-O1	1.713 (3)
$\mathrm{Ba} 1-\mathrm{Cl} 1^{\text {viii }}$	3.305 (2)		
Se1-O1-Co1	122.54 (18)	$\mathrm{Co} 1-\mathrm{Cl} 1-\mathrm{Ba} 1^{\text {viii }}$	171.41 (8)
$\mathrm{Co} 1-\mathrm{Cl} 1-\mathrm{Ba} 1^{\text {xii }}$	92.06 (4)	$\mathrm{Ba} 1^{\text {xii }}-\mathrm{Cl} 1-\mathrm{Ba} 1^{\text {viii }}$	83.17 (4)
$\mathrm{Co} 1-\mathrm{Cl} 1-\mathrm{Ba} 1^{\text {xiii }}$	92.06 (4)	$\mathrm{Ba} 1^{\text {xiii }}-\mathrm{Cl} 1-\mathrm{Ba} 1^{\text {viii }}$	83.17 (4)
$\mathrm{Ba} 1^{\text {xii }}-\mathrm{Cl} 1-\mathrm{Ba} 1^{\text {xiii }}$	112.04 (6)		

[^0]The highest difference peak is $0.76 \AA$ from Ba 1 and the deepest difference hole is $0.76 \AA$ from Ba1.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

References

Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
Bruker (1999). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Berrigan, R. \& Gatehouse, B. M. (1996). Acta Cryst. C52, 496-497.
Johnston, M. G. \& Harrison, W. T. A. (2000). Z. Anorg. Allg. Chem. 626, 24872490.

Harrison, W. T. A. (1999). Acta Cryst. C55, 1980-1983.
Shape Software (1999). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
Sheldrick, G. M. (1997). SHELX97. University of Göttingen, Germany. Wildner, M. (1991). Monatsh. Chem. 122, 585-594.

[^0]: Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $x, y, 1-z$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z$; (v) $x, y, 1+z$; (vi) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (vii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (viii) $1-x,-y, 1-z$; (ix) $-x,-y, z$; (x) $-x,-y, 1-z$; (xi) $x, y,-z$; (xii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (xiii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$.

